Як знайти вершини кутів
прочитали: 61
Виходячи з однієї точки, прямі утворюють кут, де загальна для них точка є вершиною. У розділі теоретичної алгебри нерідко зустрічаються завдання, коли необхідно знайти координати цієї вершини, щоб потім визначити рівняння проходить через вершину прямий.
1
Перед тим, як почати процес знаходження координат вершини, визначитеся з вихідними даними. Прийміть, що шукана вершина належить трикутнику ABC, в якому відомі координати двох інших вершин, а також числові значення кутів, рівні "e" і "k" по стороні AB.
2
Зіставте нову систему координат з однієї зі сторін трикутника AB таким чином, щоб початок системи координат збігалося з точкою A, координати якої вам відомі. Друга вершина B буде лежати на осі OX, і її координати вам також відомі. Визначте по осі ОХ значення довжини сторони AB згідно координатам і прийміть її рівною "m".
3
Опустіть перпендикуляр з невідомої вершини C на вісь ОХ і на сторону трикутника AB відповідно. Отримана висота "y" і визначає значення однієї з координат вершини C по осі OY. Прийміть, що висота "y" ділить сторону AB на два відрізки, рівні "x" і "m - x".
4
Оскільки вам відомі значення всіх кутів трикутника, значить, відомі і значення їх тангенсів. Прийміть значення тангенсів для кутів, прилеглих до сторони трикутника AB, рівними tan (e) і tan (k).
5
Введіть рівняння для двох прямих, що проходять по сторонам AC і BC відповідно: y = tan (e) * x і y = tan (k) * (m - x). Потім знайдіть перетин цих прямих, використовуючи перетворені рівняння прямих: tan (e) = y / x і tan (k) = y / (m - x).
6
Якщо прийняти, що tan (e) / tan (k) дорівнює (y / x) / (y / (m - x)) або після скорочення "y" - (m - x) / x, в результаті ви отримаєте шукані значення координат, рівні x = m / (tan (e) / tan (k) + e) і y = x * tan (e).
7
підставте значення кутів (E) і (k), а також знайдене значення боку AB = m в рівняння x = m / (tan (e) / tan (k) + e) і y = x * tan (e).
8
Перетворіть нову систему координат у вихідну систему координат, оскільки між ними встановлено взаємно-однозначна відповідність, і отримаєте шукані координати вершини трикутника ABC.